Bézier curves can be defined for any degree n. A recursive definition for the Bézier curve of degree n expresses it as a point-to-point linear combination (linear interpolation) of a pair of corresponding points in two Bézier curves of degree n − 1.
Let denote the Bézier curve determined by any selection of points P0, P1, ..., Pn. Then to start,
The formula can be expressed explicitly as follows:
where are the binomial coefficients.
For example, for n = 5:
Program to Create Bezier curve
This program use only simple array operations to compute polynomial coefficients.
Can be done using factorial too .
#include <stdio.h>
#include <graphics.h>
#include <math.h>
void bezier (int x1[], int y1[], int no_ctrlpt)
{
int i,j,row,col;
double t,xt=0,yt=0; // xt , yt - points to plot curve
int pcoeff[20][20]; // used to save the coefficents of the polynomial
// created using pascal triangle
// code to find the coefficient of the polynomial
for(i=0;i<no_ctrlpt;i++) // no_ctrlpt - number of control points .
// one point is a set of x, y coordinate
{
for(j=0;j<=i;j++)
{
if(j==0||i==j)
{
pcoeff[i][j]=1;
}
else
{
pcoeff[i][j]=pcoeff[i-1][j-1]+pcoeff[i-1][j];
}
}
}
// code to compute the blend and to fit the curve
for (t = 0.0; t < 1.0; t += 0.005)
{
int k, n= no_ctrlpt-1;
double blend, term1,term2;
xt=0.0;
yt=0.0;
for(k=0;k<no_ctrlpt;k++)
{
if(k==0) // check needed since if k=0 then pow (t,k) will return domain error
term1=1; //since anything raise to zero is 1
else
term1=pow(t,k);
term2=pow( 1-t, n-k);
blend = (double)pcoeff[no_ctrlpt-1][k]*term1*term2; // no_ctrlpt - 1 need since
//only last row of the generated pascal triangle is needed
xt=xt+x1[k]*blend;
yt=yt+y1[k]*blend;
}
putpixel ((int)xt,(int)yt, RED);
}
for (i=0; i<no_ctrlpt; i++)
putpixel (x1[i], y1[i], YELLOW);
}
void main()
{
int gd = DETECT, gm;
int x[20], y[20]; // used to store x, y coordinate system
int i,n;
initgraph (&gd, &gm, "..\\bgi");
setbkcolor(BLUE);
printf("Enter the number of control points");
scanf("%d",&n);
printf ("Enter the x- and y-coordinates of the control points.\n");
for (i=0; i<n; i++)
scanf ("%d%d", &x[i], &y[i]);
bezier (x, y,n); // calling function to fit the curve
getch();
closegraph();
}
The above program modified to draw the x and y axis and to draw the Bézier curve is listed below :
#include <stdio.h>
#include <graphics.h>
#include <math.h>
void bezier (int x1[], int y1[], int no_ctrlpt)
{
int i,j,row,col;
double t,xt=0,yt=0;
int pcoeff[20][20];
for(i=0;i<no_ctrlpt;i++)
{
for(j=0;j<=i;j++)
{
if(j==0||i==j)
{
pcoeff[i][j]=1;
}
else
{
pcoeff[i][j]=pcoeff[i-1][j-1]+pcoeff[i-1][j];
}
}
}
for (t = 0.0; t < 1.0; t += 0.005)
{
int k, n= no_ctrlpt-1;
double blend, term1,term2;
xt=0.0;
yt=0.0;
for(k=0;k<no_ctrlpt;k++)
{
if(k==0)
term1=1; //since anything raise to zero is 1
else
term1=pow(t,k);
term2=pow( 1-t, n-k);
blend = (double)pcoeff[no_ctrlpt-1][k]*term1*term2;
xt=xt+x1[k]*blend;
yt=yt+y1[k]*blend;
}
putpixel ((int)xt,(int)yt, RED);
}
for (i=0; i<no_ctrlpt; i++)
putpixel (x1[i], y1[i], YELLOW);
}
void main()
{
int gd = DETECT, gm;
int x[20], y[20],gap=50;
char str[5];
int i,n;
initgraph (&gd, &gm, "..\\bgi");
setbkcolor(BLUE);
line(5,getmaxy()-10,getmaxx()-5,getmaxy()-10);
line(3,8,3,getmaxy()-8);
for( i= gap;i<getmaxx();i=i+gap) // gap required for spacing of co-ordinate values
{
outtextxy(i,getmaxy()-14,"|");
itoa(i,str,10);
outtextxy(i,getmaxy()-8,str);
}
for( i=gap;i<getmaxy();i=i+gap)
{
outtextxy(1,getmaxy()-i,"-");
itoa(i,str,10);
outtextxy(8,getmaxy()-i,str);
}
printf("Enter the number of control points");
scanf("%d",&n);
printf ("Enter the x- and y-coordinates of the four control points.\n");
printf(" eg: if 3 control point then enter 50 50 100 100 150 50 \n");
for (i=0; i<n; i++)
{
scanf ("%d%d", &x[i], &y[i]);
y[i]= getmaxy()-y[i]; // this step required for shifting (0,0) position from top left to bottom left
}
bezier (x, y,n);
getch();
closegraph();
}
Sample Input :
if 3 control points : 200 200 250 150 300 200
if 4 control points : 200 200 250 150 300 200 350 250
No comments:
Post a Comment