Saturday, December 14, 2013

Bézier curve fitting program


Bézier curves can be defined for any degree n. A recursive definition for the Bézier curve of degree n expresses it as a point-to-point linear combination (linear interpolation) of a pair of corresponding points in two Bézier curves of degree n − 1.


Let \mathbf{B}_{\mathbf{P}_0\mathbf{P}_1\ldots\mathbf{P}_n} denote the Bézier curve determined by any selection of points P0, P1, ..., Pn. Then to start,
\mathbf{B}_{\mathbf{P}_0}(t) = \mathbf{P}_0 \text{, and}
\mathbf{B}(t) = \mathbf{B}_{\mathbf{P}_0\mathbf{P}_1\ldots\mathbf{P}_n}(t) = (1-t)\mathbf{B}_{\mathbf{P}_0\mathbf{P}_1\ldots\mathbf{P}_{n-1}}(t) + t\mathbf{B}_{\mathbf{P}_1\mathbf{P}_2\ldots\mathbf{P}_n}(t)




 The formula can be expressed explicitly as follows:
\begin{align}  \mathbf{B}(t) = {} &\sum_{i=0}^n {n\choose i}(1 - t)^{n - i}t^i\mathbf{P}_i \\                = {} &(1 - t)^n\mathbf{P}_0 + {n\choose 1}(1 - t)^{n - 1}t\mathbf{P}_1 + \cdots \\                  {} &\cdots + {n\choose n - 1}(1 - t)t^{n - 1}\mathbf{P}_{n - 1} + t^n\mathbf{P}_n,\quad t \in [0,1]\end{align}








 where \scriptstyle {n \choose i} are the binomial coefficients.
For example, for n = 5:

\begin{align}
  \mathbf{B}_{\mathbf{P}_0\mathbf{P}_1\mathbf{P}_2\mathbf{P}_3\mathbf{P}_4\mathbf{P}_5}(t) = \mathbf{B}(t)
    = {} & (1 - t)^5\mathbf{P}_0 + 5t(1 - t)^4\mathbf{P}_1 + 10t^2(1 - t)^3 \mathbf{P}_2 \\
    {} & + 10t^3 (1-t)^2 \mathbf{P}_3 + 5t^4(1-t) \mathbf{P}_4 + t^5 \mathbf{P}_5,\quad t \in [0,1]
\end{align}  


Program to Create Bezier curve

This program  use only  simple array operations to compute polynomial coefficients.
Can be done using factorial too .

 #include <stdio.h>
#include <graphics.h>
#include <math.h>
void bezier (int x1[], int y1[], int no_ctrlpt)
{
   int i,j,row,col;
   double t,xt=0,yt=0; // xt , yt - points to plot curve
   int pcoeff[20][20];  // used to save the coefficents of the polynomial
                                 // created using pascal triangle
// code to find the coefficient of the polynomial
    for(i=0;i<no_ctrlpt;i++)   // no_ctrlpt - number of control points .
                                         // one point is a set of x, y coordinate
    {
        for(j=0;j<=i;j++)
        {
        if(j==0||i==j)
        {
        pcoeff[i][j]=1;
        }
        else
        {
        pcoeff[i][j]=pcoeff[i-1][j-1]+pcoeff[i-1][j];
        }
        }

    }
// code to compute the blend and to fit the curve
        for (t = 0.0; t < 1.0; t += 0.005)

          {
          int k, n= no_ctrlpt-1;
          double blend, term1,term2;

          xt=0.0;
          yt=0.0;
          for(k=0;k<no_ctrlpt;k++)
          {
          if(k==0)   // check needed since if k=0 then pow (t,k) will return domain error
          term1=1; //since anything raise to zero is 1
          else
          term1=pow(t,k);
          term2=pow( 1-t, n-k);
          blend = (double)pcoeff[no_ctrlpt-1][k]*term1*term2; // no_ctrlpt - 1 need since
                                              //only last row  of the generated pascal triangle is needed
                                        
          xt=xt+x1[k]*blend;
          yt=yt+y1[k]*blend;
          }

    putpixel ((int)xt,(int)yt, RED);
  }
    for (i=0; i<no_ctrlpt; i++)
    putpixel (x1[i], y1[i], YELLOW);
   }

 void main()
 {
   int gd = DETECT, gm;
   int x[20], y[20]; // used to store x, y coordinate system
   int i,n;
   initgraph (&gd, &gm, "..\\bgi");
   setbkcolor(BLUE);
   printf("Enter the number of control points");
   scanf("%d",&n);
   printf ("Enter the x- and y-coordinates of the  control points.\n");
   for (i=0; i<n; i++)
   scanf ("%d%d", &x[i], &y[i]);
   bezier (x, y,n);    // calling  function to fit the curve
   getch();
   closegraph();
 }

The above program modified to draw the x and y axis and to draw the Bézier curve is listed below :

#include <stdio.h>
#include <graphics.h>
#include <math.h>
void bezier (int x1[], int y1[], int no_ctrlpt)
{
   int i,j,row,col;
   double t,xt=0,yt=0;
   int pcoeff[20][20];


    for(i=0;i<no_ctrlpt;i++)
    {
        for(j=0;j<=i;j++)
        {
        if(j==0||i==j)
        {
        pcoeff[i][j]=1;
        }
        else
        {
        pcoeff[i][j]=pcoeff[i-1][j-1]+pcoeff[i-1][j];
        }
        }

    }

        for (t = 0.0; t < 1.0; t += 0.005)

          {
          int k, n= no_ctrlpt-1;
          double blend, term1,term2;

          xt=0.0;
          yt=0.0;
          for(k=0;k<no_ctrlpt;k++)
          {
          if(k==0)
          term1=1; //since anything raise to zero is 1
          else
          term1=pow(t,k);
          term2=pow( 1-t, n-k);
          blend = (double)pcoeff[no_ctrlpt-1][k]*term1*term2;
          xt=xt+x1[k]*blend;
          yt=yt+y1[k]*blend;
          }

    putpixel ((int)xt,(int)yt, RED);
  }
    for (i=0; i<no_ctrlpt; i++)
    putpixel (x1[i], y1[i], YELLOW);
   }

 void main()
 {
   int gd = DETECT, gm;
   int x[20], y[20],gap=50;
   char str[5];
   int i,n;
   initgraph (&gd, &gm, "..\\bgi");
   setbkcolor(BLUE);
   line(5,getmaxy()-10,getmaxx()-5,getmaxy()-10);
   line(3,8,3,getmaxy()-8);

   for( i= gap;i<getmaxx();i=i+gap)    // gap required for spacing of co-ordinate values
   {
   outtextxy(i,getmaxy()-14,"|");
   itoa(i,str,10);
   outtextxy(i,getmaxy()-8,str);
   }
   for( i=gap;i<getmaxy();i=i+gap)
   {
   outtextxy(1,getmaxy()-i,"-");
   itoa(i,str,10);
   outtextxy(8,getmaxy()-i,str);
   }

   printf("Enter the number of control points");
   scanf("%d",&n);
   printf ("Enter the x- and y-coordinates of the four control points.\n");
   printf(" eg: if 3 control point then enter 50 50 100 100 150 50 \n");
   for (i=0; i<n; i++)
   {
   scanf ("%d%d", &x[i], &y[i]);
   y[i]= getmaxy()-y[i]; // this step required for shifting (0,0) position from top left to bottom left
   }
   bezier (x, y,n);
   getch();
   closegraph();
 }


Sample Input :
           if 3 control points : 200 200 250 150 300 200
           if 4 control points : 200 200 250 150 300 200 350 250



No comments:

Post a Comment